\(\int \sec ^3(c+d x) (a+a \sec (c+d x)) \, dx\) [2]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 19, antiderivative size = 63 \[ \int \sec ^3(c+d x) (a+a \sec (c+d x)) \, dx=\frac {a \text {arctanh}(\sin (c+d x))}{2 d}+\frac {a \tan (c+d x)}{d}+\frac {a \sec (c+d x) \tan (c+d x)}{2 d}+\frac {a \tan ^3(c+d x)}{3 d} \]

[Out]

1/2*a*arctanh(sin(d*x+c))/d+a*tan(d*x+c)/d+1/2*a*sec(d*x+c)*tan(d*x+c)/d+1/3*a*tan(d*x+c)^3/d

Rubi [A] (verified)

Time = 0.06 (sec) , antiderivative size = 63, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.211, Rules used = {3872, 3853, 3855, 3852} \[ \int \sec ^3(c+d x) (a+a \sec (c+d x)) \, dx=\frac {a \text {arctanh}(\sin (c+d x))}{2 d}+\frac {a \tan ^3(c+d x)}{3 d}+\frac {a \tan (c+d x)}{d}+\frac {a \tan (c+d x) \sec (c+d x)}{2 d} \]

[In]

Int[Sec[c + d*x]^3*(a + a*Sec[c + d*x]),x]

[Out]

(a*ArcTanh[Sin[c + d*x]])/(2*d) + (a*Tan[c + d*x])/d + (a*Sec[c + d*x]*Tan[c + d*x])/(2*d) + (a*Tan[c + d*x]^3
)/(3*d)

Rule 3852

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Dist[-d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 3853

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Csc[c + d*x])^(n - 1)/(d*(n
- 1))), x] + Dist[b^2*((n - 2)/(n - 1)), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n,
 1] && IntegerQ[2*n]

Rule 3855

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rule 3872

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rubi steps \begin{align*} \text {integral}& = a \int \sec ^3(c+d x) \, dx+a \int \sec ^4(c+d x) \, dx \\ & = \frac {a \sec (c+d x) \tan (c+d x)}{2 d}+\frac {1}{2} a \int \sec (c+d x) \, dx-\frac {a \text {Subst}\left (\int \left (1+x^2\right ) \, dx,x,-\tan (c+d x)\right )}{d} \\ & = \frac {a \text {arctanh}(\sin (c+d x))}{2 d}+\frac {a \tan (c+d x)}{d}+\frac {a \sec (c+d x) \tan (c+d x)}{2 d}+\frac {a \tan ^3(c+d x)}{3 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.14 (sec) , antiderivative size = 60, normalized size of antiderivative = 0.95 \[ \int \sec ^3(c+d x) (a+a \sec (c+d x)) \, dx=\frac {a \text {arctanh}(\sin (c+d x))}{2 d}+\frac {a \sec (c+d x) \tan (c+d x)}{2 d}+\frac {a \left (\tan (c+d x)+\frac {1}{3} \tan ^3(c+d x)\right )}{d} \]

[In]

Integrate[Sec[c + d*x]^3*(a + a*Sec[c + d*x]),x]

[Out]

(a*ArcTanh[Sin[c + d*x]])/(2*d) + (a*Sec[c + d*x]*Tan[c + d*x])/(2*d) + (a*(Tan[c + d*x] + Tan[c + d*x]^3/3))/
d

Maple [A] (verified)

Time = 0.61 (sec) , antiderivative size = 60, normalized size of antiderivative = 0.95

method result size
derivativedivides \(\frac {-a \left (-\frac {2}{3}-\frac {\sec \left (d x +c \right )^{2}}{3}\right ) \tan \left (d x +c \right )+a \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )}{d}\) \(60\)
default \(\frac {-a \left (-\frac {2}{3}-\frac {\sec \left (d x +c \right )^{2}}{3}\right ) \tan \left (d x +c \right )+a \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )}{d}\) \(60\)
parts \(\frac {a \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )}{d}-\frac {a \left (-\frac {2}{3}-\frac {\sec \left (d x +c \right )^{2}}{3}\right ) \tan \left (d x +c \right )}{d}\) \(62\)
risch \(-\frac {i a \left (3 \,{\mathrm e}^{5 i \left (d x +c \right )}-12 \,{\mathrm e}^{2 i \left (d x +c \right )}-3 \,{\mathrm e}^{i \left (d x +c \right )}-4\right )}{3 d \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )^{3}}+\frac {a \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{2 d}-\frac {a \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{2 d}\) \(95\)
norman \(\frac {-\frac {3 a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{d}+\frac {4 a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{3 d}-\frac {a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}}{d}}{\left (-1+\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )^{3}}-\frac {a \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{2 d}+\frac {a \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{2 d}\) \(104\)
parallelrisch \(-\frac {a \left (9 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) \cos \left (d x +c \right )-9 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) \cos \left (d x +c \right )+3 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) \cos \left (3 d x +3 c \right )-3 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) \cos \left (3 d x +3 c \right )-12 \sin \left (d x +c \right )-4 \sin \left (3 d x +3 c \right )-6 \sin \left (2 d x +2 c \right )\right )}{6 d \left (\cos \left (3 d x +3 c \right )+3 \cos \left (d x +c \right )\right )}\) \(144\)

[In]

int(sec(d*x+c)^3*(a+a*sec(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

1/d*(-a*(-2/3-1/3*sec(d*x+c)^2)*tan(d*x+c)+a*(1/2*sec(d*x+c)*tan(d*x+c)+1/2*ln(sec(d*x+c)+tan(d*x+c))))

Fricas [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 88, normalized size of antiderivative = 1.40 \[ \int \sec ^3(c+d x) (a+a \sec (c+d x)) \, dx=\frac {3 \, a \cos \left (d x + c\right )^{3} \log \left (\sin \left (d x + c\right ) + 1\right ) - 3 \, a \cos \left (d x + c\right )^{3} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \, {\left (4 \, a \cos \left (d x + c\right )^{2} + 3 \, a \cos \left (d x + c\right ) + 2 \, a\right )} \sin \left (d x + c\right )}{12 \, d \cos \left (d x + c\right )^{3}} \]

[In]

integrate(sec(d*x+c)^3*(a+a*sec(d*x+c)),x, algorithm="fricas")

[Out]

1/12*(3*a*cos(d*x + c)^3*log(sin(d*x + c) + 1) - 3*a*cos(d*x + c)^3*log(-sin(d*x + c) + 1) + 2*(4*a*cos(d*x +
c)^2 + 3*a*cos(d*x + c) + 2*a)*sin(d*x + c))/(d*cos(d*x + c)^3)

Sympy [F]

\[ \int \sec ^3(c+d x) (a+a \sec (c+d x)) \, dx=a \left (\int \sec ^{3}{\left (c + d x \right )}\, dx + \int \sec ^{4}{\left (c + d x \right )}\, dx\right ) \]

[In]

integrate(sec(d*x+c)**3*(a+a*sec(d*x+c)),x)

[Out]

a*(Integral(sec(c + d*x)**3, x) + Integral(sec(c + d*x)**4, x))

Maxima [A] (verification not implemented)

none

Time = 0.23 (sec) , antiderivative size = 70, normalized size of antiderivative = 1.11 \[ \int \sec ^3(c+d x) (a+a \sec (c+d x)) \, dx=\frac {4 \, {\left (\tan \left (d x + c\right )^{3} + 3 \, \tan \left (d x + c\right )\right )} a - 3 \, a {\left (\frac {2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )}}{12 \, d} \]

[In]

integrate(sec(d*x+c)^3*(a+a*sec(d*x+c)),x, algorithm="maxima")

[Out]

1/12*(4*(tan(d*x + c)^3 + 3*tan(d*x + c))*a - 3*a*(2*sin(d*x + c)/(sin(d*x + c)^2 - 1) - log(sin(d*x + c) + 1)
 + log(sin(d*x + c) - 1)))/d

Giac [A] (verification not implemented)

none

Time = 0.31 (sec) , antiderivative size = 96, normalized size of antiderivative = 1.52 \[ \int \sec ^3(c+d x) (a+a \sec (c+d x)) \, dx=\frac {3 \, a \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right ) - 3 \, a \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right ) - \frac {2 \, {\left (3 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 4 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 9 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{3}}}{6 \, d} \]

[In]

integrate(sec(d*x+c)^3*(a+a*sec(d*x+c)),x, algorithm="giac")

[Out]

1/6*(3*a*log(abs(tan(1/2*d*x + 1/2*c) + 1)) - 3*a*log(abs(tan(1/2*d*x + 1/2*c) - 1)) - 2*(3*a*tan(1/2*d*x + 1/
2*c)^5 - 4*a*tan(1/2*d*x + 1/2*c)^3 + 9*a*tan(1/2*d*x + 1/2*c))/(tan(1/2*d*x + 1/2*c)^2 - 1)^3)/d

Mupad [B] (verification not implemented)

Time = 14.52 (sec) , antiderivative size = 102, normalized size of antiderivative = 1.62 \[ \int \sec ^3(c+d x) (a+a \sec (c+d x)) \, dx=\frac {a\,\mathrm {atanh}\left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}{d}-\frac {a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5-\frac {4\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{3}+3\,a\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{d\,\left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6-3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4+3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2-1\right )} \]

[In]

int((a + a/cos(c + d*x))/cos(c + d*x)^3,x)

[Out]

(a*atanh(tan(c/2 + (d*x)/2)))/d - (3*a*tan(c/2 + (d*x)/2) - (4*a*tan(c/2 + (d*x)/2)^3)/3 + a*tan(c/2 + (d*x)/2
)^5)/(d*(3*tan(c/2 + (d*x)/2)^2 - 3*tan(c/2 + (d*x)/2)^4 + tan(c/2 + (d*x)/2)^6 - 1))